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J Phys. A: Math. Gen. 17 (1984) L677-L679. Printed in Great Britain 

LEITER TO THE EDITOR 

The critical behaviour of systems with correlated defects 

S N Dorogovtsev 
A F Ioffe Physico-Technical Institute Academy of Sciences of the USSR, 194021, Leningrad, 
USSR 

Received 17 May 1984 

Abstract. For the system in which correlations between quenched defect positions fall as 
/x  - x'l-"(a = 4- E - > 0) the E, ed-expansions of the critical exponents are obtained up 
to the third order. It is shown that if the task of finding the critical exponents for a system 
with uncorrelated quenched point defects is solved at order E"' of the &-expansion, then 
the critical exponents for the system considered can be simply obtained up to ( m  +l) th  
order of the E, Ed expansion. The calculations are carried out completely in the special 
case of the uniaxial magnet. 

The space correlated quenched defects lead to a critical behaviour type other than the 
usual one for models with the standard quenched point defects (Khmelnitskii 1975, 
Lubensky 1975). The case of the systems with correlations between the point quenched 
impurities falling by a power law Ix - x ' I - ~ (  a = 4 - E - Ed > 0) at large distances (or 
-U + wk-&d = c( k )  after the Fourier transformation) was considered by Dorogovtsev 
(1981) and Weinrib and Halperin (1983). The critical exponents are v = 2/(4 - E - Ed) 
and a = -2cd/(4 - E - e d )  exactly when the appropriate fixed point with w* # 0 is 
stable. Here E = 4 - D where D is the space dimension. The other exponents were 
calculated only to order E, &d. It will be shown in this letter that using information 
about the critical behaviour of a system with the uncorrelated defects, one can easily 
obtain the critical exponents of the model under consideration. 

It is convenient for us to employ the Ginsburg (1975) approach for the derivation 
of the Gell-Mann-Low equations although one can work in any other technique. The 
Gell-Mann-Low equations for the model of the g(p4 type with quenched point defects 
are of the form 

where ( )'= a/a In x- ' ,  x is the inverse correlation length. The correlation length 
exponents U and 77 are 

u- '=2--7(g,  u)-2t(g, u)=2-2T(g,  U), 

17 = 17k, U), 
where t(g, U )  is the one irreducible three-point vertex. As usual, the ladder type of 
diagrams do not contribute to gf,(g, U )  and ufu(g, U). 

There are three sorts of vertices used in the diagram technique: simple four-point 
vertices g, dashed and wavy lines, corresponding respectively to contributions U and 
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wk-‘d to the correlator c(  k). The principles of the diagrams selection on the right-hand 
side of the equations ( 3 )  are given in Dorogovtsev (1981) and Weinrib and Halperin 
(1983). The Gell-Mann-Low equations for the system considered are of the form 

Only the diagrams, obtained from the all allowed one irreducible four-point vertices 
by selection the ones with one pair of external lines entering into the wavy vertex w, 
contribute to the wfw(g,  U, w ) .  Therefore 

f w k ,  U, w )  = 2 t k ,  U, w ) ,  (8) 

where t ( g ,  U, w )  is the usual three-point vertex introduced in ( 4 ) .  Using the relations 
obtained, we find the Gell-Man-Low functions for a system with the correlated defects: 

Note that the terms with &dw allowing calculation of critical exponents up to the fourth 
order of the E ,  Ed expansion, are taken into account in (9). 

The equations ( 1 )  for the one-component magnet with quenched point defects are 
given by (Shalaev 1977) 

g ’ = f & g  - $ g Z  +6gu +41gu2 - 23g2u + Y g 3  +. . . , 
U’ = f E U  - gu + 4 u 2  +:g2u - 1 lgu2 +21 u3 +. . . . 

The exponents are 

7 = i g 2 - g u  +UZ+. . . , 
v-’ = 2( 1 - f g  + U  +$g’-$gu +$u2+. . .). 

Using (10) - (12)  and ( 2 ) ,  (9, (9), we obtain 

7 = EdW + i g ’ - g (  U + w )  +(U + w)’ +. . . 
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- 6gw2 +21 U 3  +58u2w +53Uw2 + 16 w3 - &&W, (14) 

w’= ;( E + & d ) W  - gw +2uw +2w2 +2g2w 

-5guw -5gw2 +5u2w + louw2 +5w3 - &dw2. 

(Really there is no need to take into account the last terms with &dW at the third-order 
calculations.) For simplicity we consider now the special case of the uniaxial magnet 
( E  = 0). The coordinates of the appropriate fixed point of equations (14) are 

w,J3 2 (15) I 2  17 2 g = Ed +%Ed, = $ E d  -m&d,  288Ed. 
Then we find the critical exponents 

The critical exponents only for n = 1 and E = 0 were obtained above. However, it is 
clear that the calculations pursued could be easily generalised to the case of other 
values n and E. So if the Gell-Mann-Low equations for the magnet with non-correlated 
quenched defects are known, then one can also find critical exponents for the system 
considered. Actually, if for the system with the standard defects the exponent y is 
known to order E”’, then for the correlated defects case one can calculate it up to the 
( ITI + 1)th order of the E, Ed expansion. 

The author is greatful to Yu A Firsov, S A Ktitorov and B N Shalaev for fruitful 
discussions. 
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